Neural Expectation Maximization

نویسندگان

  • Klaus Greff
  • Sjoerd van Steenkiste
  • Jürgen Schmidhuber
چکیده

We introduce a novel framework for clustering that combines generalized EM with neural networks and can be implemented as an end-to-end differentiable recurrent neural network. It learns its statistical model directly from the data and can represent complex non-linear dependencies between inputs. We apply our framework to a perceptual grouping task and empirically verify that it yields the intended behavior as a proof of concept.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Expectation Maximization Algorithm and an Artificial Neural Network for Automated Bone Segmentation

Comparison of the Expectation Maximization Algorithm and an Artificial Neural Network for Automated Bone Segmentation Austin Ramme4, Vincent Magnotta1,2, Nicole M. Grosland2,3 1Radiology, University of Iowa, Iowa City, IA; 2Biomedical Engineering, University of Iowa, Iowa City, IA; 3Center for Computer Aided Design, The University of Iowa, Iowa City, IA; 4Carver College of Medicine, The Univers...

متن کامل

Using Expectation-Maximization for Reinforcement Learning

We discuss Hinton’s (1989) relative payoff procedure (RPP), a static reinforcement learning algorithm whose foundation is not stochastic gradient ascent. We show circumstances under which applying the RPP is guaranteed to increase the mean return, even though it can make large changes in the values of the parameters. The proof is based on a mapping between the RPP and a form of the expectation-...

متن کامل

Noise-enhanced clustering and competitive learning algorithms

Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017